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Abstract. The Kondo lattice model has been analyzed in the presence of a random inter-site interaction
among localized spins with non zero mean J0 and standard deviation J . Following the same framework
previously introduced by us, the problem is formulated in the path integral formalism where the spin
operators are expressed as bilinear combinations of Grassmann fields. The static approximation and the
replica symmetry ansatz have allowed us to solve the problem at a mean field level. The resulting phase
diagram displays several phase transitions among a ferromagnetically ordered region,a spin glass one, a
mixed phase and a Kondo state depending on J0, J and its relation with the Kondo interaction coupling JK .
These results could be used to address part of the experimental data for the CeNi1−xCux compound, when
x ≤ 0.8.

PACS. 64.60.Cn Order-disorder transformations; statistical mechanics of model systems – 75.10.Nr Spin-
glass and other random models – 75.30.Mb Valence fluctuation, Kondo lattice, and heavy-fermion phe-
nomena

1 Introduction

The magnetism in strongly correlated f -electron systems
has become a source of great interest due to the physics
involved [1] like, for instance, quantum phase transitions
and Non-Fermi liquid behavior [2]. The anti-ferromagnetic
s-f exchange coupling of conduction electrons to local-
ized spins can be responsible for the competition between
the Kondo effect,that reduces the localized magnetic mo-
ments, and the RKKY interaction among magnetic impu-
rities which, in turn, may give rise to magnetic long range
order.

Recently, an experimental magnetic phase diagram of
the Kondo CeNi1−xCux compound has been proposed [3]
showing the existence of a spin glass like state. In the
CeCu limit, the negative magnetic interaction is domi-
nant enough to produce an anti-ferromagnetic long range
order with no indications of the Kondo effect. When Cu
is substituted by Ni, there is a phase transition around
x = 0.8 from the antiferromagnetic (AF) to a ferromag-
netic (FM) ordering, which finally disappears at roughly
x = 0.2; the Curie temperature is roughly equal to 1 K
and is slowly decreasing down to x = 0.4 and then dis-
appears at x = 0.2. Above the ferromagnetic phase, a
spin-glass (SG) phase was identified by magnetic suscep-
tibility measurements and the SG transition temperature
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increases from 2 to 6 K for x varying from 0.7 to 0.2. For
x < 0.2 a Kondo behaviour has been proposed, and fi-
nally CeNi is an intermediate valence compound. Thus,
at very low temperatures, the phase sequence FM-SG-
Kondo has been observed with decreasing x and in the
range 0.7 − 0.2 for x, the sequence FM-SG is obtained
with increasing temperature. It is quite rare to observe a
ferromagnetic phase in cerium Kondo compounds, while
antiferromagnetic phases are often observed and for exam-
ple the sequence of SG-AF-Kondo transitions is obtained
with increasing x in Ce2Au1−xCoxSi3 alloys [4].

Quite recently, a model has been introduced [5] to
study the interplay between spin glass ordering and a
Kondo state. This model is based on the previously in-
troduced Kondo lattice model [6] with an intrasite s-f
exchange interaction and an intersite long range random
interaction of zero mean that couples the localized spins.
The use of the static approximation and the replica sym-
metry ansatz has made possible to solve the problem at a
mean field level. This fermionic problem is formulated by
representing the spin operators as a bilinear combination
of Grassmann fields and the partition function is found
through the functional integral formalism [7–10]. The re-
sults are shown in a phase diagram of T/J versus JK/J
where T is the temperature, JK is the intrasite Kondo
exchange interaction and J is the standard deviation of
the random inter-site interaction. For high temperatures
and small values of JK , a paramagnetic phase is found.
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In this situation, if the temperature is decreased a second
order phase transition to a spin glass phase appears at Tf .
The model shows a transition line Jc

K(T ) separating the
paramagnetic and the spin glass phases from the Kondo
phase.

In the present work, the model mentioned in the pre-
vious paragraph has been extended in order to include
the proper elements that produce also a ferromagnetic or-
dering by taking the mean random interaction J0 to be
different from zero. Therefore, the magnetization can be
introduced in addition to the other order parameters and
solved coupled to them.

From this procedure a quite non-trivial phase dia-
gram is obtained which contains ferromagnetism, a mixed
phase [12,13] (ferromagnetism and spin glass), a spin
glass phase and a Kondo state. For instance, one of the
achievements of the present work is the finding of a mixed
phase whose existence should not be discarded in the mag-
netic measurement of CeNi1−xCux, as mentioned in refer-
ence [3]

This paper is organized as follows. In Section 2 we
present the model and its development in order to obtain
the free energy and the saddle point coupled equations for
the order parameters. The phase diagram of the temper-
ature T/J versus JK/J is shown for several values of J0.
The Almeida-Thouless line is also calculated. Discussions
and concluding remarks are presented in the last section.

2 The model and results

The model considered in this work was introduced before
in reference [5] to study spin glass ordering in a Kondo
lattice compound so the Hamiltonian is

H− µcNc − µfNf =
∑
k,σ

εknkσ + ε0
∑
i,σ

nf
iσ

+ JK

∑
i

[S+
fis

−
i + S−

fis
+
i ] −

∑
i,j

JijS
z
fiS

z
fj (1)

where JK > 0 and the sum runs over N lattice sites. In
the present case the random intersite interaction Jij in the
Hamiltonian is infinite ranged with a Gaussian distribu-
tion where 〈Jij〉 = 2J0/N and 〈J2

ij〉 = 8J2/N . This par-
ticular scaling compensates the factors 1/2 that originate
in the definition of the operators Sz in equation (2) and
also in changing from sum over sites to sum over bonds.

The spin variables S(+−)
fi (s(+−)

ci ), Sz
fi are bilinear com-

binations of the creation and destruction operators [5] for
localized (conduction) fermions f †

iσ, fiσ (d†iσ ,diσ) with the
spin projection σ =↑ or ↓:

S+
fi = f †

i↑fi↓; s+ci = d†i↑di↓

S−
fi = f †

i↓fi↑; s−ci = d†i↓di↑

Sz
fi =

1
2
[f †

i↑fi↑ − f †
i↓fi↓]. (2)

The µf (µc) are the chemical potential for the localized
(conduction) band. The energy ε0 is referred to µf while εk
is referred to µc.

The partition function is expressed in terms of func-
tional integrals using anticommuting Grassmann variables
ϕiσ(τ) and ψiσ(τ) associated with the conduction and the
localized electrons respectively. Therefore,

Z =
∫
D(ψ∗ψ)D(ϕ∗ϕ) exp

{∫ β

0

dτ [L0(ψ∗, ψ)

+L0(ϕ∗, ϕ) + LSG + LK ]
}

(3)

where

L0(ψ∗, ψ) =
∑
ijσ

ψ∗
iσ(τ)

[
∂

∂τ
− ε0

]
δijψjσ(τ),

L0(ϕ∗, ϕ) =
∑
ijσ

ϕ∗
iσ(τ)

[
∂

∂τ
δij − tij

]
ϕjσ(τ),

LSG =
∑
ij

JijS
z
fi(τ)S

z
fj(τ),

LK =
JK

N

∑
iσ

[
ϕ∗

i−σ(τ)ψi−σ(τ)
]

×
∑
jσ

[
ψ∗

jσ(τ)ϕjσ(τ)
]
. (4)

In the static approximation [7–10], it is possible to
solve the problem in a mean field theory where the Kondo
state is described by the complex order parameters [5,6]:

λ∗σ =
1
N

∑
i,ω

〈ψ∗
iσ(ω)ϕiσ(ω)〉

λσ =
1
N

∑
i,ω

〈ϕ∗
iσ(ω)ψiσ(ω)〉· (5)

Following the treatment for the Kondo part in the par-
tition function as introduced in reference [5], where it was
assumed that λ∗σ ≈ λ∗ (λσ ≈ λ), we show in the Appendix
that first the conduction electron degrees of freedom may
be integrated out to give

Z

Z0
d

= e [−2NβJKλ∗λ] Zeff (6)

where

Zeff =
∫
D(ψ∗ψ) exp

{∑
ωσ

∑
i,j

g−1
ij (ω)ψ∗

iσ(ω)

× ψjσ(ω) +ASG

}
, (7)

Z0
d is the partition function of the free conduction elec-

trons,

g−1
ij (ω) = (iω − βε0)δij − β2J2

Kλ
∗λγij(ω), (8)
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while γ−1
ij = iωδij − βtij is the inverse d-electron Green’s

function and β = 1/T is the inverse temperature.
The free energy is given by the replica method

βF = 2βJKλ
∗λ− lim

n→0

1
Nn

(〈〈Zn
eff (Jij)〉〉ca − 1) (9)

and the averaged replicated partition function can be
linearized by means of the usual Hubbard-Stratonovich
transformation. Therefore,

〈〈Zn
eff (Jij)〉〉ca =

∫
Παβdqαβ

∫
Παdmα exp


−N

×

 β2J2

2

∑
αβ

q2αβ +
βJ0

2

∑
α

m2
α




Λ(qαβ ,mα) (10)

with α = 0, 1, ..n being the replica index and

Λ(qαβ ,mα) =
∫
D(ψ∗

αψα) exp
{ ∑

i,jσ,ω

g−1
ij (ω)

×
∑

α

ψ∗
iσα(ω)ψjσα(ω) + βJ0

∑
iα

2Sα
i mα

+ β2J2
∑
ijαβ

4Sα
i S

β
j qαβ

}
· (11)

A more detailed derivation of equations (10) and (11) is
given in the Appendix.

This problem is analysed within the replica symmetric
ansatz where qα�=β = q is the spin glass order parameter,
mα = m is the magnetization and qαα = q + χ, (χ = χ

β )
with χ being the static susceptibility. The sum over replica
indices also gives quadratic terms which can be linearized
again by introducing new auxiliary fields in equation (10):

Λ(qαβ ,mα) =
∫
Dzj

∫
D(ψ∗ψ)

× exp




∑
i,jσ,ω

g−1
ij

∑
α

ψ∗
iσα(ωn)ψjσα(ωn)

+β J0m
∑

α

2Sα
i + β J

√
2q
∑
i

zi 2Sα
i




×
∫
Dξα

j exp


−

∑
αj

(ξα
j )2 + βJ

√
2χξα

j 2Sα
j


 (12)

where Dx = 1√
2π

e−x2/2dx and

Sα
i =

1
2

∑
ωnασ=±

σψ∗
ασ(ωn)ψασ(ωn).

The functional integral in equation (12) can be per-
formed and the saddle point solution for the free energy

is given by

βF = 2βJKλ
2 +

1
2
β2J2

(
χ2 + 2qχ

)
+
βJ0

2
m2 − lim

n→0

1
Nn

{∫
ΠiDzi

×
∫
Πα,iDξ

α
i exp

[∑
ωσ

ln
[
detG−1

ijσ(ω)
]]− 1

}

(13)

where in the previous equation we introduced the inverse
Green’s function

G−1
ijσ(ω) = g−1

ij (ω) − δijσh(zi, ξ
α
i ) (14)

with an effective field

h(zi, ξ
α
i ) = βJ0m+ βJ

√
2qzi + βJ

√
2χξα

i . (15)

A problem is presented by the calculation of the
Green’s function Gijσ(ω) in equation (14) where there is
a random Gaussian field h(zi, ξ

α
i ) ≡ hiα applied at every

site i of n replicated lattices with N sites. The decoupling
used at this point is the same as for reference [5], i.e., the
original Green’s function Gijσ(ω) is replaced by a Green’s
function Γµνσ(ω) where there is a uniform field hiα applied
in every site µ, ν of a fictitious Kondo lattice. Therefore,
going to the reciprocal space and assuming a constant den-
sity of states for the conduction electron band ρ(ε) = 1

2D
for −D < ε < D, the sum over Matsubara’s frequencies ω
can be performed in equation (13) and the resulting free
energy is

βF = 2βJKλ
2 +

1
2
β2J2

{
χ2 + 2χq

}
+
βJ0

2
m2

−
∫ +∞

−∞
Dz ln

[∫ +∞

−∞
Dξ eE(ξ)

]
(16)

where

E(ξ) =
1
βD

∫ +βD

−βD

dx ln {S(ξ, x)},

S(ξ, x) = cosh(h+
x ) + cosh(

√
∆),

∆ = (h−x )2 + (βJkλ)2 and h±x =
h± x

2
·

The saddle point equations for the order parameters q, m,
χ and λ can be found from equation (16).

The limit of stability for the order parameters solutions
with replica symmetry is achieved if the Almeida-Thouless
eigenvalue becomes negative:

λAT = 1 − 2 β2J2

∫ +∞

−∞
Dz

{∫ +∞
−∞ Dξ eE(ξ) Ω(T )∫ +∞

−∞ Dξ eE(ξ)

−
[∫ +∞

−∞ Dξ eE(ξ) T1(ξ)∫ +∞
−∞ Dξ eE(ξ)

]2 }2

(17)
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where

Ω(T ) = [T1(ξ)]2 − T2(ξ) + T3(ξ)

T1(ξ) =
1

2βD

∫ βD

−βD

dx


sinh(h+

x ) + sinh(
√

∆)√
∆

(h−x )

S(ξ, x)




T2(ξ) =
1

4βD

∫ βD

−βD

dx


sinh(h+

x ) + sinh(
√

∆)√
∆

(h−x )

S(ξ, x)




2

T3(ξ) =
1

4βD

∫ βD

−βD

dx


cosh(h+

x ) + sinh(
√

∆)√
∆

S(ξ, x)

+

[
cosh(

√
∆) − sinh(

√
∆)√

∆

] (h−x )2
∆

S(ξ, x)


 ·

3 Discussion

We have studied in this work a Kondo lattice model where
the localized moments interact through a random inter-
site interaction which has an average different from zero.
The static approximation and replica symmetry ansatz
lead to a mean field solution for the problem. The result-
ing coupled saddle point equations for the order parame-
ters produce solutions which give a Kondo state and mag-
netic ordering like ferromagnetism, spin glass and a mixed
phase. In principle, we would be able to build up transi-
tion surfaces among those phases in a space T/J (tem-
perature) versus J0/J (the inter-site interaction average)
and JK/J (the Kondo coupling) where J (the inter-site
interaction standard deviation) is kept constant. These
parameters JK , J0, J and the temperature are the set of
energy scales in the present model. The conduction elec-
trons bandwidth D is kept constant.

The result shown in Figure 1 represents a cut in the
cited space transversal to the JK/J axis. For this situ-
ation and using JK/J= 4, the Kondo state is still not
turned on (it means λ = 0). The obtained phase diagram
for this fermionic model resembles the classical one [11,13]
(it depends basically on J0 and its relation to J) except
that the numerical values of the transition temperatures
are smaller. If J0 < 1.46J , for decreasing temperature,
there is a second order transition from a paramagnetic to
a spin glass phase (m = 0, q �= 0). For that region, the
Almeida-Thouless (AT) line coincides with the transition
line. However, for J0 ≥ 1.46J , for decreasing tempera-
ture, the model shows a transition from a paramagnetic
to a ferromagnetic phase (m �= 0, q �= 0). The AT line is
located at higher temperature than the calculated replica
symmetry line transition T ∗(J0) between the ferromag-
netic and the spin glass phases. Therefore, this fermionic
model shows a transition from a ferromagnetic to a replica
symmetry breaking spin glass phase with a large number

0 .5 1 1.5 2 2.5 3
0

.5

1

1.5

Fig. 1. Cut in the phase transition space transversal to the
JK/J axis for JK= 2, J = 0.5 and D = 10. The Kondo state
is not turned on yet and the transitions among the ferromag-
netism and the spin glass phases depend on the value of J0. The
dashed line shows the transition from the paramagnetic phase
to the ferromagnetic and the spin glass phases. The dotted
line is the Almeida-Thouless (AT) line which, for lower values
of J0, coincides with the paramagnetic – spin glass transition
line (horizontal dashed line). The dot-dashed and the AT line
delimit the mixed phase between the ferromagnetic and spin
glass phases.

of degenerate states but still with non-zero spontaneous
magnetization which is called a mixed phase [12,13].

Figure 2 shows the cut in the phase space transver-
sal to the J0/J axis. For values of J0/J close to zero (see
Fig. 2a), the phase diagram resembles the scenario already
found in reference [5], that is a paramagnetic phase at
high temperatures, a spin glass phase below the freezing
temperature Tf and a line JK=Jc

K(T) separating both
phases from a Kondo state. For that situation, the AT
line is at Tf and follows the line JK=Jc

K(T).
As the value of J0/J is increased (for small JK/J) (see

Figs. 2b, c and d), the phase diagram starts to show the
presence of a ferromagnetic phase which has a transition
temperature Tc(J0) increasing with J0, the AT line and
the calculated replica symmetric line T ∗(J0) decreasing
with J0. Nevertheless the AT line is always above T ∗(J0).
In that scenario, for decreasing temperature, first a transi-
tion from paramagnetic to a ferromagnetic phase appears
followed by a transition from the ferromagnetic to a mixed
phase. This behavior is reminiscent of that one described
for the cut transversal to JK/J (Fig. 1). For some value of
J0/J , the mixed phase finally disappears and that region
of the phase diagram is totally occupied by the ferromag-
netic phase. For larger values of JK/J , the phase diagram
goes to a Kondo state where the transition line Jc

K(T)
does not depend on J0.

A remark should be made about the transition line
between the spin glass phase and the Kondo state. At
low temperatures, this is a first order transition line and
so multiple possible solutions for the order parameters
can be found. Nonetheless, the actual stable solutions can
be obtained from the minimization of the free energy. In
the case of J0/J< 1.46 the hatched region in Figure 2a
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Fig. 2. Cut in the phase transition space transversal to the J0/J axis for several values of J0, J = 0.5 and D = 10. The solid
line shows the thermodynamically stable transition from the Kondo phase to the other ones. For lower temperatures, a hatched
region in panel (a) delineates a multiple solution region where the solid line to the right corresponds to the thermodynamically
stable solution. The horizontal dashed, dotted and dot-dashed lines have the same meaning as in Figure 1. The AT line follows
the horizontal dotted line up to the Kondo transition point. Beyond that, for larger values of JK , the AT line follows the
transition line from the Kondo phase and the mixed and spin glass phases (solid line, lower temperatures). One can notice
that, as J0 increases, a ferromagnetic and a mixed phase start to appear and, for some value of J0, the spin glass phase finally
disappears.

displays where these multiple solutions occur. By comput-
ing the free energy we have found the thermodynamically
stable solutions. The solid line to the right of the hatched
region in Figure 2a corresponds to these solutions and the
hatched region itself corresponds to metastable solutions.
Such a carefull analysis can be considered an improvement
with respect to our previous work [5] where such a discus-
sion had not been done. Nevertheless the previous SG-
Kondo state transition line shown there is approximately
the same as the one presented here. Thus, the hatched
regions corresponding to the one displayed in Figure 2a
have not been presented in Figures 2b–d.

4 Conclusions

In this work it has been studied a Kondo lattice model
in the presence of a random inter-site interaction which
produces paramagnetism, ferromagnetism, a spin glass
phase, a mixed phase and a region where the magnetic
moments of the localized electrons are suppressed by
the screening of the conduction ones (Kondo state). The
model has four energy scales: the temperature, J0 (the
average inter-site interaction), J (the inter-site interac-
tion variance) and JK (the Kondo coupling). As a re-

sult one has a three dimensional phase diagram with axes
J0/J , JK/J and temperature. Some cuts of this diagram
transversal to the JK/J and J0/J , planes are shown in the
Figures 1 and 2. The position of the transition line sep-
arating the Kondo state from the magnetic phases is not
affected by J0. This energy scale is basically responsible
for locating several magnetic orderings along the temper-
ature range.

One can try to address the experimental phase diagram
found in reference [3] for the alloys CeNi1−xCux, but theo-
retically if we vary only JK with x, we have found a ferro-
magnetic phase above the spin glass, in disagreement with
the experimental result. However, the equivalence between
their experimental phase diagram and ours (see Figs. 1
and 2) is not so straightforward since the Ni content would
have to be associated to both J0 and JK . This could be
an indication that the ergodicity breaking mechanism for
the formation of magnetic phases like spin glass and ferro-
magnetism in CeNi1−xCux is far more complicated than
the modelling by a random inter-site interaction can ad-
dress. Although recent investigations on the ferromagnetic
transverse Ising spin glass suggest also the existence of a
spin glass transition below the Curie temperature [14], it is
plausible that this be a characteristic of the Sherrington–
Kirkpatrick model with a high degree of frustration. Less
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frustrated spin glass models [15] may sustain spin glass
order above the Curie temperature and they can be more
indicated for the study of the CeNi1−xCux compounds.

To conclude, in reference [5] a Kondo lattice model
with strong frustration (at mean field level) has been
solved showing the existence of a SG and a Kondo state
depending on JK/J (as defined in Sect. 2). These results
could address part of the experimental phase diagram of
CeNi1−xCux [4]. The purpose of the present work has been
to examine a wider and more complex region of this ex-
perimental phase diagram which includes ferromagnetism.
Therefore, we have improved our previous work by choos-
ing a non-zero average of the random coupling J0. From
this approach we have been able to generate a quite non-
trivial phase diagram with a spin glass phase, ferromag-
netism, a Kondo state and a mixed phase (spin glass and
ferromagnetism). Nevertheless the calculated spin glass
freezing temperature is lower than the Curie temperature
in contrast with some experimental findings [3]. However,
as pointed out in reference [3], a mixed phase can not be
discarded as a possible explanation for the magnetic mea-
surements. The calculations with the ferromagnetic phase
has also shown an improvement with respect to our previ-
ous work [5] regarding the actual location of the SG-Kondo
first order transition line. The present approach might also
explain the frustration in antiferromagnetic Kondo sys-
tems like Ce2Au1−xCoxSi3 alloys. This work is now on
progress.

The numerical calculations were performed at LANA (Depar-
tamento de Matemática, UFSM) and at LSC (Curso de Ciência
da Computação, UFSM). This work was partially supported by
the Brazilian agencies FAPERGS (Fundação de Amparo à Pes-
quisa do Rio Grande do Sul) and CNPq (Conselho Nacional
de Desenvolvimento Cient́ıfico e Tecnológico).

Appendix

We outline here briefly the method used in reference [5].
In order to obtain equations (10) and (11) of Section 2
we must first use the static approximation in the Fourier
transform of LK in equation (4) and introduce the Kondo
order parameter by means of the identity

exp

{∫ β

0

LKdτ

}
=
∫ ∞

−∞
Πσdλ

†
σdλσΠσ

×δ
(
λ†σN−

∑
j,w

ψ†
jσ(w)ϕjσ(w)

)

×δ
(
λσN−

∑
j,w

ϕ†
jσ(w)ψjσ(w)

)

× exp
{
βJkN [λ†↑λ↓ + λ†↓λ↑]

}
(18)

and using the integral representation for the δ function we
obtain, after some algebra,

Z =
∫
Πσdλ

†
σdλσ exp

{
−NβJK

∑
σ

λ†σλσ

}
Zstat (19)

where

Zstat =
∫
D(ψ∗ψ)D(ϕ∗ϕ)

× exp

{∫ β

0

dτ [L0(ψ∗, ψ) + L0(ϕ∗, ϕ) + LSG]

}

× exp


βJK

∑
σ


λ†−σ

∑
j,w

ϕ†
jσ(w)ψjσ(w)

+λσ

∑
j,w

ψ†
jσ(w)ϕjσ(w)




 · (20)

The mean field approximation adopted here is based
on two assumptions: first, fluctuations in time are ignored
(static approximation); second, fluctuations in space are
also ignored in the definition of the order parameters. Both
assumptions lead us to a quadratic form in the Grassmann
variables ϕ and ϕ∗ in equation (20) and shifting the repre-
sentation to Matsubara’s frequencies we can perform the
functional integrals to obtain equation (6), where now the
order parameters λ†σ, λσ are taken at their saddle point
value. We also have∫ β

0

dτLSG =
∑
ij

JijS
z
fiS

z
fj (21)

where

Sz
fi =

1
2

∑
ω

[
ψ∗

i↑(ω)ψi↑(ω) − ψ∗
i↓(ω)ψi↓(ω)

]
. (22)

Hence, in order to get the configurational average over
the random coupling Jij , we use a Gaussian distribution
with average and variance given in Section 2. So

〈Zn
eff (Jij)〉ca =

∫
D(ψ∗ψ) exp

{
Aeff

0 +Areplic
SG

}
(23)

where

Aeff
0 =

∑
ijσα

∑
ωn

ψ∗
iσα(ωn)g−1

ij (ωn)ψjσα(ωn)

and

Areplic
SG =

1
N


β2J2

2

∑
αβ

[∑
i

4Sα
i S

β
i

]2

+
βJ0

2

∑
α

[∑
i

2Sα
i

]2

 ·
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In the previous equation, g−1
ij (ωn) has been defined in

Section 2. The static approximation is also used to write
the Sα

i in terms of Grassmann fields as in equation (22)
and the resulting equation can be linearized by standard
procedures [10], introducing the order parameters qαβ

and mα which gives equations (10) and (11).
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